
Performance Benchmark Report

AtScale Cloud Data
Warehouse Benchmark:
Google BigQuery
Quantified Results for Query Performance,
Compute Cost, Complexity and Concurrency

TABLE OF CONTENTS

Background __ 1

Benchmarking Methodology __ 2

 Benchmark Dataset ___ 2

 Benchmark Queries ___ 3

 Test Harness __ 3

 Configuration Tested __ 4

 Query Performance Test Methodology _____________________________ 4

 Concurrency Test Methodology __________________________________ 4

 Compute Cost Calculations _____________________________________ 5

Summary Results __ 6

 Query Performance Test Results _________________________________ 7

 Concurrency Test Results _______________________________________ 8

 Compute Cost Test Results ______________________________________ 9

 Complexity Test Results _______________________________________ 10

Conclusion __ 13

© 2019 AtScale Inc. All rights reserved. 1

Background
The enterprise has entered into a new era of data warehousing. Driven by the increasing popularity of

the public cloud, new data warehouse technologies are making inroads into the traditional on-premise

data warehouse market. By offering customers the power of a relational, scale-out data platform

without the overhead of managing it, cloud data warehouses promise to make more data available at a

lower cost with fewer data management headaches.

In this inaugural cloud data warehouse benchmark analysis, we set out

to quantify vendor benefits while comparing and contrasting the most

popular offerings.

Using the standard TPC-DS (10TB) benchmarking framework, we set out to test the performance

and scalability boundaries of the various options. In addition, we also examined the operational cost

dimension and we challenged the traditional data modeling techniques by testing an alternative to raw

TPC-DS SQL.

In summary, we focused our testing on the following 4 areas:

Query
Performance
How fast can the cloud

Data Warehouse answer a
query for one user?

Run 20 TPC-DS Queries for 1 user
five times & measure the total

elapsed time on a TPC-DS 10TB
dataset

User
Concurrency
How do multiple users
running queries affect

performance & stability?

Run 20 TPC-DS Queries for 5, 25 &
50 users one time & measure the
total elapsed time on a TPC-DS

10TB dataset

Compute
Costs

How do query workloads
and configuration impact

your monthly bill?

Measure the total elapsed time or
bytes read for the query &

concurrency test on a TPC-DS
10TB dataset

Semantic
Complexity

How difficult is it to write
the query to answer the

business question?

Compare the raw TPC-DS SQL
queries to the equivalent BI
semantic layer queries on a

TPC-DS 10TB dataset

Figure 1: Benchmark Testing Topics

The results of this study use the above metrics to quantify Google BigQuery’s

results in these four areas.

© 2019 AtScale Inc. All rights reserved. 2

Benchmarking Methodology

Benchmark Dataset

We used the TPC-DS benchmark v2.11.0 from the Transaction Processing Council (TPC) for our tests.

We chose the 10TB (scale factor 10,000) version for the test given that this version’s largest fact table

(store_sales) at 28+ billion rows and the largest dimension (customer) at 65 million rows is a significant

scale challenge for most data platforms. In addition, the TPC-DS benchmark is ubiquitous amongst the

database warehouse vendors and we felt it represented a reasonable real-life analytics schema and set

of queries.

Table Name Row Size Row Count

call_center 305 54
catalog_page 139 40,000
catalog_returns 166 1,440,033,112
catalog_sales 226 14,399,964,710
customer 132 65,000,000
customer_address 110 32,500,000
customer_demographics 42 1,920,800
date_dim 141 73,049
household_demographics 21 7,200
income_band 16 20
inventory 16 1,311,525,000
item 281 402,000
promotions 124 2,000
reason 38 70
ship_mode 56 20
store 263 1,500
store_returns 134 2,879,970,104
store_sales 164 28,799,983,563
time_dim 59 86,400
warehouse 117 25
web_page 96 4,002
web_returns 162 720,020,485
web_sales 226 7,199,963,324
web_site 292 78

1

2

3

THE TPC-DS 10TB
DATASET HAS:

Multiple fact tables

Large fact tables

Large dimensions

Figure 2: TPC-DS 10TB Table SIzes

.

© 2019 AtScale Inc. All rights reserved. 3

Benchmark Queries

We selected a representative set of 20 queries from the 99 TPC-DS queries set to keep the run time and

costs of running the benchmarks within reason without having to downsize data size. The queries were

chosen in no particular order and were selected to eliminate redundancy and to ensure the usage of most

tables. It was an imperative to benchmark the cloud data warehouse vendors with the largest data we

could afford and test to reveal real-life differences in the respective offerings.

The following queries were used for the test:

Figure 3: TPC-DS Test Queries

Test Harness

To ensure consistency for concurrency tests, we ran queries using v5.1.1 of Apache JMeter. The instructions,

documentation, utility scripts, results and JMeter JMX files can be found in our GitHub repository and are

available upon request.

We designed the JMeter test suites to run the following configurations:

1 concurrent user, 5 loops

5 concurrent users, 1 loop

25 concurrent users, 1 loop

50 concurrent users, 1 loop

100 concurrent users, 1 loop (tested with AtScale only)

mailto:hi@atscale.com

© 2019 AtScale Inc. All rights reserved. 4

Configuration Tested

The following BigQuery configuration was used for the test:

Vendor Configuration Compute Cost per Hour1

BigQuery On Demand $5.00/TB

BigQuery Monthly Fixed Rate Pricing $40,000/month2

Figure 4: Data Warehouse Configurations

Query Performance Test Methodology

To test raw query performance, we ran the 20 TPC-DS queries with one concurrent user five times and

calculated the total elapsed time to finish the queries. The elapsed time is simply the difference between

the start and end time of the test as reported by JMeter. We disabled Google BigQuery’s query caching

for this test.

Concurrency Test Methodology

To test how each data warehouse performs with different levels of user concurrency, we ran each of the

20 TPC-DS queries with 1, 5, 25 and 50 concurrent users using JMeter. We added a 750ms sleep between

each query start and using a single connection pool that was sized according to the number of threads for

the test. We used 1 loop (iteration) for the 5, 25, and 50 thread test and 5 loops for the 1 thread test. The

elapsed time is simply the difference between the start and end time of each thread test as reported by

JMeter. We disabled Google BigQuery’s query caching for this test.

Footnotes:

1. Storage cost wasn’t factored in (only compute cost)

2. Estimated cost using monthly fixed rate pricing for 2,000 slots at $55.56/hour

© 2019 AtScale Inc. All rights reserved. 5

Compute Cost Calculations

For Google BigQuery cost estimates, we used the on-demand pricing model and captured the total

compute cost using Google’s cost table export for the span of the concurrency test. Since BigQuery on-

demand pricing charges per byte scanned, costs were based on the amount of data each query read.

Google’s standard on-demand pricing is $5 per terabyte with the first terabyte free.

You will see in the cost analysis that Google’s on-demand pricing was more expensive by orders of

magnitude than the fixed rate (time based) pricing method. We estimated the costs for the monthly,

fixed pricing model using Google BigQuery’s monthly pricing plan of $10,000 per 500 slot increment per

month. With BigQuery’s on-demand pricing, you may be allocated up to 2,000 slots based on availability.

With a 2,000 slot fixed rate pricing plan ($40,000/month), you are guaranteed 2,000 slots.

Therefore, if we had run the test using the fixed rate pricing model, it’s

possible that performance results may have been improved since 2,000 slots

of resource allocation is guaranteed.

For the fixed rate pricing plan, we calculated the compute costs by multiplying the total end-to-end run

time as reported by JMeter for the concurrency test by the cluster compute cost per hour like so:

ConcurrencyRunTimeMinutes / 60 * ComputeCostPerHour

We explicitly excluded storage costs from our calculations. We found that storage cost was nominal

across all platforms and given that it’s a fixed cost, it was not subject to variation in our testing scenarios.

© 2019 AtScale Inc. All rights reserved. 6

Summary Results
We also ran the same 20 TPC-DS queries through the AtScale platform for BigQuery. AtScale’s Acceleration

Structures showed major benefits in accelerating query performance, improving user concurrency and

reducing compute costs. The illustration below shows the extent of the benefits AtScale provides on top

of the BigQuery data warehouse:

Test
Improvement Factor with AtScale

BigQuery

Query Performance1 7.7x Faster

User Concurrency2 20x Faster

Compute Cost3 10x Cheaper

Complexity4 76% less complex SQL queries

Figure 5: Improvements with AtScale

Footnotes:

1. Elapsed time for executing 1 query five times

2. Elapsed time executing 1 (x5), 5, 25, 50 queries

3. Represents on-demand based pricing model

4. Complexity score for SQL queries for number of:
functions, operations, tables, objects & subqueries (AtScale = 258, TPC-DS = 1,057)

© 2019 AtScale Inc. All rights reserved. 7

Query Performance Test Results

For the query performance test, we ran our 20 TPC-DS queries 5 times each using JMeter with a single

thread. Even at a single concurrent user, we saw orders of magnitude improvement using AtScale on the

BigQuery data warehouse in this test.

220

200

180

160

140

120

100

80

60

40

20

0

Elapsed Run Time (Minutes) – All Runs: BigQuery

Ru
n

Ti
m

e
(M

in
ut

es
)

220

11

No AtScale AtScale

Figure 6: Elapsed Run Time for 1 Thread

© 2019 AtScale Inc. All rights reserved. 8

Concurrency Test Results

For the user concurrency test, we ran consecutive JMeter suites configured to execute 1, 5, 25, and 50

queries at the same time to simulate user concurrency. Each test ran 1 iteration with the exception of the

1 thread test which ran 5 iterations sequentially.

In this test, we saw some real impact in query performance under additional user concurrency load.

100

90

80

70

60

50

40

30

20

10

0

N
o

A
tS

ca
le

A
tS

ca
le

N
o

A
tS

ca
le

A
tS

ca
le

N
o

A
tS

ca
le

A
tS

ca
le

N
o

A
tS

ca
le

A
tS

ca
le

Elapsed Time (Minutes) by Thread Group – BigQuery

Warehouse / Threads / With AtScale

1 5 25 50

Ru
n

Ti
m

e
(M

in
ut

es
)

54

7

15

1 2 1

50

98

Figure 7: Elapsed Run Time for 1, 5, 25 & 50 Threads

© 2019 AtScale Inc. All rights reserved. 9

Compute Cost Test Results

You will also see the value that AtScale can bring to cost predictability. By minimizing the amount of data

scanned, AtScale takes less time to run queries, with fewer resources used, which means more users can

run queries at the same time (higher concurrency) without additional hardware or resources.

$2,500

$2,250

$2,000

$1,750

$1,500

$1,250

$1,000

$750

$500

$250

$0
No AtScale AtScale

Compute Cost – All Runs: BigQuery

C
os

t

$2,455.49

$243.30

Figure 8: Compute Costs for All Thread Groups (On-Demand Pricing Model)

We also estimated what cost would have been under the $40,000 per month fixed pricing model

for 2,000 slots.

$200

$180

$160

$140

$120

$100

$80

$60

$40

$20

$0
No AtScale AtScale

Compute Cost – All Runs: BigQuery

C
os

t

$201.44

$59.88

Compute Cost – All Runs: BigQuery

Compute Cost – All Runs: BigQuery

Figure 9: Compute Costs for All Thread Groups (Fixed Rate Pricing Model)

© 2019 AtScale Inc. All rights reserved. 10

Complexity Test Results

The TPC-DS benchmark provides a good illustration of just how hard it can be to write SQL to answer a

simple business question. Translating tables and star schemas into business logic is not an easy task.

With today’s BI tools, our business users are spending more and more time dealing with data engineering

tasks rather than getting answers to their business questions.

For example, with query #60 of the TPC-DS benchmark, the business question is fairly straightforward

but the SQL to express it is not.

B U S I N E S S Q U E S T I O N

What is the monthly sales amount for a specific month in a specific year, for

items in a specific category, purchased by customers residing in a specific

time zone?

S Q L T O A N S W E R B U S I N E S S Q U E S T I O N :

TPC-DS Raw
with ss as (
 select
 i_item_id,sum(ss_ext_sales_price) total_sales
 from
 store_sales,
 date_dim,
 customer_address,
 item
 where
 i_item_id in (select
 i_item_id
from
 item
where i_category in (‘Jewelry’))
 and ss_item_sk = i_item_sk
 and ss_sold_date_sk = d_date_sk
 and d_year = 1999
 and d_moy = 9
 and ss_addr_sk = ca_address_sk
 and ca_gmt_offset = -6
 group by i_item_id),
 cs as (
 select
 i_item_id,sum(cs_ext_sales_price) total_sales
 from
 catalog_sales,
 date_dim,
 customer_address,

 item
 where
 i_item_id in (select
 i_item_id
from
 item
where i_category in (‘Jewelry’))
 and cs_item_sk = i_item_sk
 and cs_sold_date_sk = d_date_sk
 and d_year = 1999
 and d_moy = 9
 and cs_bill_addr_sk = ca_address_sk
 and ca_gmt_offset = -6
 group by i_item_id),
 ws as (
 select
 i_item_id,sum(ws_ext_sales_price) total_sales
 from
 web_sales,
 date_dim,
 customer_address,
 item
 where
 i_item_id in (select
 i_item_id
from
 item
 ...

26,640 bytes

Figure 10: TPC-DS Raw SQL to answer question

© 2019 AtScale Inc. All rights reserved. 11

As you can see, it’s not at all obvious what the query is doing and obviously there’s a lot of repetition which

makes it very prone to error.

In response to this challenge, for this benchmark study, we defined an AtScale virtual cube that drastically

simplifies user queries by translating the raw tables and schema into a business semantic layer. The

following screenshot is the TPC-DS model expressed in AtScale Design Center:

Figure 11: AtScale TPC-DS Data Model

Instead of writing complex SQL or engineering data models in the BI tool, this business question was

easily answered with Tableau on AtScale as you can see below:

Figure 12: Tableau on AtScale TPC-DS Model for Query #60

© 2019 AtScale Inc. All rights reserved. 12

The visualization above for TPC-DS query #60 generated the following SQL against AtScale:

AtScale SQL
SELECT
 `d_product_item_id` AS `d_product_item_id`,
 SUM(`Total Ext Sales Price`) AS `sum_total__ext_sales_price_ok`
FROM
 `tpc-ds benchmark model - bigquery`.`tpc-ds benchmark model` `tpc_ds_benchmark_model`
WHERE
 `I Category` = ‘Jewelry’
AND `Sold Calendar Year` = 1999
AND `Sold d_month_of_year` = 9
AND `d_customer_gmt_offset` = -6
GROUP BY 1

18,593 bytes
Figure 13: AtScale SQL to answer question

As you can see, the SQL written against a semantic model like AtScale’s is human readable and

understandable. In addition, this semantic model provided important context for query optimization

which delivered the query acceleration, user concurrency improvements and cost reduction in our

benchmark tests.

As a measure of complexity, we used an open source parser to break down each SQL statement into the

following groups: number of functions used, number of arithmetic operations, number of tables accessed,

number of objects usee and number of subqueries needed.

Here are the results:

Configuration

Complexity Factor

of
Functions

of
Operations

of
Tables

of
Objects

of
Subqueries Total Score

Without AtScale 87 66 177 700 27 1,057

With AtScale 36 2 21 198 1 258

Figure 14: Complexity score for TPC-DS benchmark with and without AtScale semantic layer

© 2019 AtScale Inc. All rights reserved. 13

Drastically
simplifying
queries for

users

Improving user
concurrency by

up to 20x

Insuring all
users access

the same,
secure data

Increasing
query

performance
by up to 7.7x

1.

4.

2. 3.

Reducing cost
by up to 10x

5.

© 2019 AtScale Inc. All rights reserved. Confidential and proprietary.

ABOUT ATSCALE

AtScale is the leading provider of adaptive analytics for data architecture modernization, empowering citizen data scientists

to accelerate and scale their business’ data analytics and science capabilities and ultimately build insight-driven enterprises.

For more information, visit us at atscale.com.

Conclusion
As you can see from the benchmark results, the future for data warehousing is definitely in the cloud.

The cloud data warehouses we tested prove that the cloud is a viable alternative with many performance

advantages for data warehousing compared to the traditional on-premise options and Google BigQuery is

a terrific option.

We also proved that the inclusion of a semantic layer like AtScale’s can make cloud data warehouses even

better by:

https://www.atscale.com/

