
AtScale Semantic Modeling
Language

Overview and Property Descriptions

Introduction 2
Semantic Modeling Language 2

atscale.yml 3
Models 5

Model: relationships property 7
Model: perspectives property 9
Model: drillthroughs property 9
Model: aggregates property 10
Model: partitions property 11

Metrics 12
Calculations 16
Connections 17
Datasets 18

Dataset: columns property 19
Dimensions 21

Dimensions: hierarchies property 22
Dimensions: hierarchies: levels: secondary_attributes property 24
Dimensions: hierarchies: levels: aliases property 26
Dimensions: hierarchies: levels: metrics property 29

Dimensions: level_attributes property 32
Dimensions: relationships property 34
Dimension: calculation_groups property 36

Row Security 37
Appendices 40

Appendix A� Relationships in AtScale Models 40



Introduction
The Semantic Modeling Language �SML� is an AtScale-provided modeling language that
data engineers can use to create projects and models to be used within AtScale. This
enables you to develop models programmatically and store them in an AtScale-connected
Git repository. You can then deploy your models directly to AtScale and connect to them
from your preferred business intelligence tool.

✏Note: Currently, AtScale only supports integration with GitHub.

Semantic Modeling Language
Once you have your Git environment set up, you can start using the Semantic Modeling
Language �SML� to programmatically create projects and models.

AtScale requires that each of your projects be stored in a single Git repository: one
repository = one project. Each project repository must be structured as follows:

● calculations/

● connections/

● datasets/

● dimensions/

● metrics/

● models/

● row_security/

● atscale.yml

The following sections describe the different object types that SML supports, as well as
the properties available for each:

● atscale.yml
● Models
● Metrics
● Calculations
● Connections
● Datasets
● Dimensions
● Row Security



atscale.yml
atscale.yml is the control file for an AtScale repository. It contains all repository-level
definitions, such as the repository name and settings for building aggregates. Each
project repository must contain an atscale.yml file at the root level.

✏Note: Some properties can appear in both atscale.yml and model files. Those
defined in model files override their counterparts in atscale.yml.

atscale.yml supports the following properties.

Property Type Required Description

unique_name string Y The name of the repository. This must be
unique across all repositories and
subrepositories.

object_type const Y The type of object defined by the file. For
atscale.yml, this must be catalog.

label string Y The name of the repository, as it appears in
AtScale. This value does not need to be
unique.

as_version number Y The version of SML being used.

aggressive_a
gg_promotion

boolean Y Enables/disables aggressive aggregate
promotion for the repository. When enabled,
all aggregates referenced by a query are
considered for promotion, regardless of
whether a join to other non-preferred or
non-aggregate datasets was required.

Supported values:
● true
● false

build_specul
ative_aggs

boolean Y Enables/disables speculative aggregates for
the repository.

When enabled, the AtScale engine
automatically creates aggregate tables that it
anticipates being useful based on your
models. These are intended to improve the
performance of queries from client BI tools
faster than with demand-defined aggregates
alone.



Unset

✏Note: In AtScale, speculative aggregates
are also called prediction-defined
aggregates.

Supported values:
● true
● false

dataset_prop
erties

object N Defines dataset properties to use within the
repository.

Supported properties:
● allow_aggregates: Boolean,

optional. Enables the AtScale engine to
create aggregates for datasets in the
project.

● allow_local_aggs: Boolean,
optional. Enables local aggregation for
datasets in the project.

● allow_peer_aggs: Boolean, optional.
Enables aggregation on data derived
from datasets in data warehouses that
are different from the source dataset.

● allow_preferred_aggs: Boolean,
optional. Enables AtScale to promote
aggregates from the model to the
preferred aggregate storage location.

Specify the unique_name of the dataset
followed by the properties and values you
want to set for it at the repository level. For
example:

dataset1:
create_hinted_aggregate: true

✏Note: Dataset properties are typically
defined at the repository level, in the
atscale.yml file; however, datasets used by
a specific model (typically fact datasets) can
have properties defined within the model
itself. For more information, see Models.



Models
Model files define AtScale models. In AtScale, a model is a metadata layer that overlays a
multi-dimensional model format on top of the datasets stored in a connected database.
The model is virtual, meaning the data is not moved or processed up front. Instead, it
contains the logic about how to process and optimize the data at query runtime.

✏Note: Some properties can appear in both atscale.yml and model files. Those
defined in model files override their counterparts in atscale.yml.

Model files support the following properties.

Property Type Required Description

unique_name string Y The unique name of the model. This must be
unique across all repositories and
subrepositories.

object_type const Y The type of object defined by the file. For
models, the value of this property should be
model.

label string Y The name of the model, as it appears in
AtScale. This value does not need to be
unique.

relationship
s

array Y Defines fact relationships specific to the
model. For more information, see Model:
relationships property.

If you do not want to add relationships to the
model, the value of this property must be [].
For example: relationships: []

✏Note: These relationships are separate
from those defined at the dimension level —
relationships at the model level involve fact
datasets, while those at the dimension level
do not. For more information, see Appendix A�
Relationships in AtScale Models.

metrics array Y A list of references to metrics and
calculations used in the model.



Supported properties:
● unique_name: String, required. The

unique name of the metric or
calculation. This must be unique within
the model file.

● folder: String, optional. The name of
the folder in which the
metric/calculation is displayed in BI
tools. If your model has a lot of
metrics/calculations, folders are a
good way to organize them.

✏Note: If you do not want to add any
metrics to the model, the value of this
property must be []. For example: metrics:
[]

description string N A description of the model.

dimensions array N A list of references to degenerate dimensions
defined on a specific fact dataset in the
model.

perspectives array N Defines perspectives for the model. For more
information, see Model: perspectives
property.

drillthrough
s

array N Defines drillthroughs for the model. For more
information, see Model: drillthroughs
property.

aggregates array N Defines user-defined aggregates for the
model. For more information, see Model:
aggregates property.

partitions array N Defines partitions for the model. For more
information, see Model: partitions property.

dataset_prop
erties

N Defines dataset properties that are specific to
the model, rather than the repository.

Supported properties:
● allow_aggregates: Boolean,

optional. Enables the AtScale engine to
create aggregates for datasets in the
project.

● allow_local_aggs: Boolean,
optional. Enables local aggregation for



Unset

datasets in the project.
● allow_peer_aggs: Boolean, optional.

Enables aggregation on data derived
from datasets in data warehouses that
are different from the source dataset.

● allow_preferred_aggs: Boolean,
optional. Enables AtScale to promote
aggregates from the model to the
preferred aggregate storage location.

Specify the name of the dataset followed by
the properties and values you want to set for
it at the model level. For example:

dataset1:
create_hinted_aggregate: true

Model: relationships property
The relationships property in a model file defines the relationships between the
model’s fact datasets and first order dimensions. These are called fact relationships.

✏Note: Relationships defined at the model level are different from those defined at the
dimension level, which do not include fact datasets. For more information, see
Dimensions: relationships property and Appendix A� Relationships in AtScale Models.

✏Note: Degenerate dimensions have relationships to the fact datasets on which they are
based. However, these dimensions do not need a relationships property as they are
created by referencing the fact dataset columns directly.

The relationships property of a model file supports the following properties.

Property Type Required Description

unique_name string Y The unique name of the relationship. This
must be unique within the model file.

from object Y Defines the side of the relationship that
contains the physical fact dataset. Typically,
this is a join column in the fact dataset.



Supported properties:
● dataset: String, required. The

physical fact dataset you want to link
to a dimension.

● join_columns: Array, required. The
columns within the dataset that you
want to use as join columns.

to object Y Defines the dimension that the from dataset
is linked to.

Supported properties:
● dimension: String, required if

row_security is undefined. The
name of the dimension to which the
from dataset is joined.

● level: String, required if
row_security is undefined. The
unique_name of the level attribute
within the dimension to use for the
relationship.

● row_security: String, required if
dimension and level are undefined.
For security relationships, the row
security object that the from dataset
is joined to.

role_play string N For role-playing relationships only. Defines
the role-playing template for the relationship.

The role-playing template is the prefix and/or
suffix that is added to every attribute in the
role-played dimension.

This value must be in one of the following
formats (including quotation marks):

● Prefix: “<prefix> {0}”
● Suffix: “{0} <suffix>”
● Prefix and suffix: “<prefix> {0}

<suffix>”

For example, if you wanted to use the prefix
Order, you would set role_play to “Order
{0}”.



Model: perspectives property
Perspectives are deployable subsets of the data model. They are meant to make it easier
for analysts to query only the subset of data that is relevant to their purposes or
responsibilities. Rather than provide analysts with the entire data model, you can make
specific dimensions, hierarchies, levels, secondary attributes, measures, and calculated
measures invisible to them.

The perspectives property in a model file supports the following properties.

Property Type Required Description

unique_name string Y The unique name of the perspective. This
must be unique within the model file.

metrics array N A list of the specific metrics and calculations
available in the perspective.

dimensions array N A list of the specific dimensions and their
hierarchies available in the perspective.

Supported properties:
● name: String, required. The name of

the dimension to include in the
perspective.

● hierarchies: Array, optional. A list of
the specific hierarchies within the
name dimension to include in the
perspective. Supported properties:

○ name: String, required. The
name of the hierarchy.

○ levels: Array, optional. A list of
the levels within the hierarchy
to include in the perspective.

● secondaryattributes: Array,
optional. A list of the dimension’s
secondary attributes to include in the
perspective.

Model: drillthroughs property
In BI tools, a drillthrough enables you to view detailed information about a specific cell
within a visualization as needed. This provides an alternative to including lots of
fine-grained attributes in large pivot tables, which can result in performance issues.
Moving these attributes to drillthroughs means they are only returned if a user requests
them for a specific cell, rather than for the entire table.



In an SML model, you can define drillthroughs that include the specific level of detail to
return for these types of queries.

The drillthroughs property in a model file supports the following properties.

Property Type Required Description

unique_name string Y The unique name of the drillthrough. This
must be unique within the model file.

metrics array Y A list of the metrics to include in the
drillthrough.

notes string N Notes about the drillthrough.

attributes array N A list of the specific attributes to include in
the drillthrough.

Supported properties:
● name: String, required. The name of

the attribute to include in the
drillthrough.

● dimension: String, required. The
dimension that the attribute defined by
name appears in.

Model: aggregates property
The aggregates property in a model file enables you to add user-defined aggregates
�UDAs).

In general, AtScale recommends relying on the aggregate tables automatically generated
by the AtScale engine. However, there are cases that are not covered by system-defined
aggregates. For example:

● Metrics on dimensions: The AtScale engine does not generate aggregate tables
for metrics that are local to a dimension only (a secondary metrical attribute in the
model).

● Non-additive metrics: The AtScale engine does not generate aggregate tables for
non-additive metrics, which are useful for distinct counts. This is because such an
aggregate table defined for one query would not be usable by other queries.

If you require aggregate tables that contain these types of dimensional attributes or
metrics, you should define your own manually using the aggregates property.



The aggregates property in a model file supports the following properties.

Property Type Required Description

unique_name string Y The unique name of the aggregate. This must
be unique within the model file.

label string Y The name of the aggregate, as it appears in
AtScale. This value does not need to be
unique.

target_conne
ction

string Y The database that the AtScale engine writes
the aggregate table to.

metrics array Y A list of the metrics and calculations to
include in the aggregate definition.

attributes array N A list of the dimension attributes to include in
the aggregate definition.

Supported properties:
● name: String, required. The name of

the dimension attribute to include.
These values are used to group the
summarized metric data in the
resulting aggregate table.

● dimension: String, required. The
dimension to which the attribute
defined by name belongs.

● partition: String, optional. Adds a
partition to the aggregate, and
determines whether it should be
defined on the key column, name
column, or both.
Supported values: name, key,
name+key

● distribution: String, optional. The
distribution keys to use when creating
the aggregate table.

Model: partitions property
The partitions property in a model file enables you to create prioritized partitioning
hints that the AtScale engine uses to create partitioned aggregate tables. The actual
partitioning scheme used by the engine depends on a number of factors, including:

● Whether the aggregate includes a column that matches a partition hint.
● Whether AtScale statistics suggest that partitioning would be worthwhile.



● Whether the target data warehouse supports table partitioning.

Within SML, all partitions used in a model are defined in the model file itself.

The partitions property in a model file supports the following properties.

Property Type Required Description

unique_name string Y The unique name of the partition. This must
be unique within the model file.

dimension string Y The dimension that contains the attribute
the partition is based on.

attribute string Y The attribute that the partition is based on.

type string Y Determines whether the partition is defined
on the name column, key column, or both.

Supported values:
● name
● key
● name+key

Metrics
Metric files define measures to be used in your repository. A measure is a numeric value
representing a summarized (or aggregated) dataset metric, such as the sum of sales or
average order quantity. Metrics always result from an aggregate calculation applied to
one or more columns of a fact dataset.

✏Note: SML uses the term metric to refer to measures in AtScale.

AtScale supports the following types of metrics:
● Additive: Metrics whose values can be summarized for any dimension attribute of

the model and then combined consistently.
● Non-additive: Metrics whose values cannot be summed across any dimensional

groupings using basic addition, since this would typically produce an inaccurate
result. The most common example of a non-additive metric is a distinct count of an
attribute value.

● Semi-additive: Metrics whose values can be summarized for some dimensions in a
model, but not all. Ratios such as average are also considered semi-additive
metrics.



✏Note: AtScale also supports calculated metrics, which in SML are defined in calculation
files. For more information, see Calculations.

Metric files support the following properties.

Property Type Required Description

unique_name string Y The unique name of the metric. This must be
unique across all repositories and
subrepositories.

object_type string Y The type of object defined by the file. For
metrics, the value of this property should be
metric.

label string Y The name of the metric, as it appears in
AtScale. This value does not need to be
unique.

calculation_
method

string Y The method used to aggregate query results
for the metric.

Supported values:
● average
● count distinct
● count non-null
● estimated count distinct
● maximum
● minimum
● percentile
● stddev_pop
● stddev_samp
● sum
● var_pop
● var_samp

The calculation method you can use depends
on the type of metric you’re creating:

● Semi-additive: average, sum,
minimum, or maximum

● Non-additive: count distinct or
percentile

● Additive: All other options

dataset string Y The source dataset that contains the column
the metric is based on.

column column Y The specific column within the dataset that



the metric is based on.

description string N A description of the metric.

semi_additiv
e

object N Defines the metric as a semi-additive metric.

Supported properties:
● position: String, required.

Determines whether the metric is First
Non-Empty or Last Non-Empty.
Supported values: first, last

● dimension: String, required. The
dimension with which the
semi-additive metric is associated.

● hierarchy: String, required. The
hierarchy with which the semi-additive
metric is associated.

● level: String, required. The level with
which the semi-additive metric is
associated.

compression number N Only for non-additive metrics using a
calulation_method of percentile.
Defines the compression score the AtScale
engine uses when estimating percentile
values for query results.

You can specify a value between 1 – 50,000.

Using a higher compression score yields more
accurate query results but requires more
memory from the engine to process. You may
need to run tests to determine the right level
of compression for your needs.

✏Note: In AtScale, compression is referred
to as Quality.

named_quanti
les

string Required
if
calculat
ion_meth
od is
percenti
le

Only for non-additive metrics using a
calulation_method of percentile.
Defines the quantile to use for query results.

Supported values:
● quartiles
● median
● deciles

format string N The format in which query results are



returned. You can use one of AtScale’s built-in
named formats or a custom format string.

Supported named formats:
● fixed
● general number
● none
● percent
● scientific
● standard

Custom format strings should be in quotes
and contain one to four sections, separated
by semicolons. For example: "$#,##0.00"

unrelated_di
mensions_han
dling

string N Determines how the AtScale engine behaves
when all of the following conditions are true:

● A client queries a model that contains
multiple fact datasets.

● The data in each fact dataset are at a
different level of granularity than the
data in the other fact datasets.

● The query references dimensions that
are not related to the metrics being
queried.

Supported values:
● error: AtScale rejects the query and

returns an error message.
● empty: AtScale displays empty cells

in the query results.
● repeat: In the query results, AtScale

repeats the values for the metric at a
level of aggregation that is determined
from the shared dimensions in the
query.

is_hidden boolean N Determines whether the metric appears in BI
tools.

Supported values:
● true
● false



Calculations
Calculation files define custom MDX expressions for creating calculated metrics in
AtScale. They can be used to combine, evaluate, or manipulate other metrics defined in
the model. For example, you can do simple math operations to combine metrics, or simple
comparison operations to return a given metric value when certain conditions are met.

In SML, calculation files are a subset of metrics. The separation of calculation metrics
from other types enables you to easily create boilerplate calculations that can be used
across multiple metrics.

✏Note: In AtScale, calculations are referred to as calculated measures.

Calculation files support the following properties.

Property Type Required Description

unique_name string Y The unique name of the calculation. This must
be unique across all repositories and
subrepositories.

object_type string Y The type of object defined by the file. For
calculations, the value of this property should
be metric_calc.

label string Y The name of the calculation as it appears in
AtScale. This value does not need to be
unique.

expression string Y The MDX expression to use for the
calculation.

This expression must be written in MDX
syntax, surrounded by quotes (“).
Additionally, it can only operate on existing
metrics in the model, and must return a
numeric value.

✏Note: AtScale only supports a small subset
of MDX functions and operators.

description string N A description of the calculation.

format string N The format of the values returned by the
calculation. You can use one of AtScale’s
built-in named formats or a custom string



format.

Supported named formats:
● fixed
● general number
● none
● percent
● scientific
● standard

Custom format strings should be in quotes (“)
and contain one to four sections, separated
by semicolons. For example: "$#,##0.00"

is_hidden boolean N Determines whether the calculation is visible
in BI tools.

Supported values:
● true
● false

Connections
Connection files define database connections and schemas for the repository. These are
required to import fact and dimension datasets into your repository.

Each connection file should define a single database connection and its schema. If you
need to use additional schemas for the same database, each must be defined in a
separate connection file.

Connection files support the following properties.

Property Type Required Description

unique_nam
e

string Y A unique name for the database and the
schema. This must be unique across all
repositories and subrepositories.

object_typ
e

const Y The type of object defined by this file. For
connections, this value must be connection.

label string Y The name of the database connection as it
appears in AtScale. This value does not need
to be unique.



as_connect
ion

string Y The name of the database connection itself,
excluding the schema.

database string Y The source database used for this
connection.

schema string Y The source schema used for this connection.

Datasets
Dataset files define datasets to use in the repository. Each dataset file in your repository
must correspond to either a physical table/view in your database, or the results of a
SELECT statement.

✏Note: Dataset files must define all columns in the physical tables they reference, and
can therefore be quite large. Because of this, AtScale recommends sharing these files
across repositories.

Dataset files support the following properties.

Property Type Required Description

unique_name string Y The unique name of the dataset. This must be
unique across all repositories and
subrepositories.

object_type const Y The type of object defined by the file. For
datasets, the value of this property must be
dataset.

label string Y The name of the dataset, as it appears in
AtScale. This value does not need to be
unique.

connection_i
d

string Y The unique_name of the connection object
that defines the database and schema in
which the dataset is stored.

sql string Required
if table is
not
provided

A SQL query used to pull data from a specific
connection defined within the repository,
similar to a database view. This determines
whether the dataset file defines a query
dataset.

table string Required The name of the table in the database that



if sql is
not
provided

the dataset is based on.

columns array Y Defines the columns available in the dataset.
For more information, see Dataset: columns
property.

description string N A description of the dataset.

immutable boolean N Determines whether the dataset changes
often or not. The AtScale engine uses this
information when running incremental builds
of aggregates that use joins on dimensions
that do not change often.

Dataset: columns property
The columns property within a dataset file defines the columns available in the dataset.

✏Note: You should define all columns available in the dataset. This is especially
important for dataset files that are shared across multiple repositories.

The columns property within a dataset file supports the following properties.

Property Type Required Description

name string Y The name of the column.

data_type string Required
unless
column is
a map

The data type of the values within the
column.

Supported values:
● string
● int
● long
● bigint
● tinyint
● float
● double
● decimal
● decimal(x,y)
● number
● number(x,y)
● numeric(x,y)
● boolean



● date
● datetime
● timestamp

sql string N Defines the column as a calculated column.

Calculated columns enable you to add simple
data transformations to the dataset. These
can be used as the basis of model attributes,
just like any other dataset column.

The value of this property should be a valid
SQL statement that can be run as part of the
SELECT list of a query.

The SQL statement is passed directly to the
underlying database when the query runs, so
it must be in a syntax that is supported by
your chosen engine. If you want to run the
query on other types of databases, use the
dialects property to define additional
dialects for it to run in.

map object N Defines a map used to create a calculated
column.

Supported properties:
● field_terminator: String, required.

The delimiter used to separate the
key:value pairs. This must be in quotes
(“).

● key_terminator: String, required.
The delimiter used to separate the
individual keys from their values. This
must be in quotes (“).

● key_type: String, required. The data
type of the map’s keys.

● value_type: String, required. The
data type of the map’s values.

The mapped columns are defined as separate
columns within the dataset file. Each of
these must have the parent_column
property.

parent_colum
n

string Required
for
mapped

For mapped columns only. Specifies the map
column used to create this column.



columns

Dimensions
Dimension files define the dimensions used in the model. A dimension is a logical
collection of attributes that are bound to specific columns in a source dataset. These
attributes are in turn used to group and filter metric data at query time.

AtScale supports the following types of dimensions:
● Normal: Dimensions that are based on a dataset. All data for a normal dimension is

normalized into a single table or view. There are two types of normal dimensions:
○ Standard: Can have any type of hierarchy.
○ Time: Must have a time hierarchy

● Degenerate: A dimension that is based on one or more columns in a fact dataset.
● Shared degenerate: A dimension that is based on one or more columns that are

common to two or more fact datasets.
● Snowflake: A logical dimension that is composed of multiple underlying physical

datasets.
● Many-to-many: Also called multi-valued. This is when a fact dataset row refers to

more than one row in a dimension dataset. In AtScale, this is modeled by defining a
dimensional bridge or junction table to resolve the many-to-many relationship.

Dimension files support the following properties.

Property Type Required Description

unique_name string Y The unique name of the dimension. This must
be unique across all repositories and
subrepositories.

object_type const Y The type of object defined by the file. For
dimensions, this value should be dimension.

label string Y The name of the dimension, as it appears in
AtScale. This value does not need to be
unique.

hierarchies array Y Defines the dimension’s hierarchies. For more
information, see Hierarchies.

level_attrib
utes

array Y Defines the level attributes in the dimension.
For more information, see Dimensions:
level_attributes property.



relationship
s

array N Defines the relationships in the dimension.
For more information, see Dimensions:
relationships property.

calculation_
groups

array N Defines the calculation groups in the
dimension. For more information, see
Dimensions: calculation_groups property.

description string N A description of the dimension.

type enum N The type of dimension defined by this file.

Supported values:
● standard: Can have any type of

hierarchy.
● time: Must have a time hierarchy.

Dimensions: hierarchies property
The hierarchies property in a dimension file defines the hierarchies within the
dimension.

Hierarchies organize the dimension attributes into categories or levels, where each level is
a subdivision of the level above. Every logical dimension you create has at least one
hierarchy with at least one level.

The hierarchies property within a dimension file supports the following properties.

Property Type Required Description

unique_name string Y The unique name of the hierarchy. This must
be unique within the dimension.

label string Y The name of the hierarchy, as it appears in
AtScale. This value does not need to be
unique.

levels array Y Defines the levels within the hierarchy. You
can include as many levels as needed in the
list.

Supported properties:
● unique_name: String, required.

Specifies the unique name of the level.
This must be unique within the
dimension.



● time_unit: String, for time
dimensions only. The unit of time to
use.
Supported values: year, halfyear,
trimester, quarter, month,
week, day, hour, minute,
second, undefined

● secondary_attributes: Array,
optional. Defines the secondary
attributes for the level. For the full list
of properties this can include, see
Diemnsions: hierarchies: levels:
secondary_attributes property.

● aliases: Array, optional. Defines
secondary attributes that can be used
as aliases for specific hierarchy levels
within BI tools. For more information,
see Dimensions: hierarchies: levels:
aliases property.

● metrics: Array, optional. Defines
metrics for the level. For more
information, see Dimensions:
hierarchies: levels: metrics property.

description string N A description of the hierarchy.

folder string N The name of the folder in which to display
this hierarchy in BI tools. If your model has a
lot of dimensional hierarchies, folders are a
good way to organize them.

filter_empty string N Configures the join behavior for the hierarchy,
which determines how empty values are
handled in client BI tools. The value you
specify must be in quotes (“).

Supported values:
● yes: Query results in BI tools only

include members that join to the fact
dataset (inner join behavior). Members
with no matching entries in the fact
dataset are still included if the client BI
tool requests them.

● no: Query results include all members
of the dimension, even those that have
no matching entries in the fact dataset
(outer join behavior). This occurs
unless the client BI tool specifically



requests to have these values filtered
out.

● always: Query results only include
members that join to the fact dataset
(inner join behavior). This typically
provides the best performance.

default_memb
er

string N Defines a member of the hierarchy to use as
the default filter for MDX queries on the
hierarchy. The value must be formatted as an
MDX expression and must be in quotes (“).

✏Note: You cannot specify secondary
attributes as default dimension members.

Dimensions: hierarchies: levels: secondary_attributes property
Secondary attributes are dimensional attributes that are not the dimension’s key, and are
not part of a hierarchy.

AtScale supports the following types of secondary attributes:
● Dimensional: Provides an independent "dimensional" attribute for grouping metric

data. This is the default type of secondary attribute.
● Level alias: Enables the creation of tabular reports that select hierarchical

expressions without forcing the user to drill down a hierarchy.

✏Note: Secondary attributes cannot be used to create relationships between datasets
and dimensions.

Within SML, secondary attributes are defined by the hierarchies > levels >
secondary_attributes property within a dimension file. You can define as many
secondary attributes as needed in the list.

The secondary_attributes property within a dimension hierarchy level supports the
following properties.

Property Type Required Description

unique_name string Y The unique name of the secondary attribute.
This must be unique within the dimension.

label string Y The name of the secondary attribute, as it
appears in AtScale. This value does not need



to be unique.

dataset string Y The dataset that contains the key_columns
the secondary attribute is based on.

name_column string Y The dataset column that the attribute is
based on.

key_columns array Y A list of the key columns that a dimension
attribute is based on. If the attribute has a
compound key, you should specify all
columns that make up the key as a list.

sort_column string N The column used to sort the attribute’s values
in result sets.

✏Note: This only applies to MDX queries.

allowed_calc
s_for_dma

array N A list of the calculation types that can be
used to create dimensionally modified
aggregates for the secondary attribute.

✏Note: When working with a time dimension,
you can only define calculation types if the
time_unit property for the level is set to
day or longer.

exclude_from
_dim_agg

boolean N Excludes this attribute from system
generated dimension-only aggregates. This is
useful if the attribute contains a large number
(millions) of distinct values that you don't
want to aggregate.

exclude_from
_fact_agg

boolean N Excludes this attribute from system
generated fact-based aggregates. This is
useful if the attribute contains a large number
(millions) of distinct values that you don't
want to aggregate.

custom_empty
_member

array N Defines a custom empty member for the
attribute.

This feature allows fact data with missing or
invalid foreign key values to be isolated and
independently aggregated from those with
valid foreign key values. Because fact records
with invalid foreign keys are aggregated
separately from records referencing valid



dimension members, analysts can easily spot
data integrity problems and further
investigate them.

Use this feature to ensure that un-joinable
values are included in query results and
aggregated under a specially designated
dimension member called the Custom Empty
Member.

Supported properties:
● key: Array, required. A list of the

empty member values to use for key
fields.

● name: String, required. The empty
member value to use for name fields.

● sort: String, optional. The empty
member value to use for the attribute's
sort column, if one is specified.

description string N A description of the secondary attribute.

is_hidden boolean N Determines whether the attribute is visible in
BI tools.

Supported values:
● false (default)
● true

folder string N The name of the folder in which the attribute
is displayed in BI tools.

contains_uni
que_names

boolean N Determines whether each member of this
attribute has a unique name. Do not enable
this functionality if two members have
different keys but the same name.

Supported values:
● true
● false

Dimensions: hierarchies: levels: aliases property
The aliases property defines secondary attributes to use as aliases for specific levels
within a hierarchy. These are useful in BI tools, as they enable the user to select a specific
level without having to navigate through the hierarchy it belongs to. You can include as
many aliases as needed in the list.



The aliases property within a dimension hierarchy level supports the following
properties.

Property Type Required Description

unique_name string Y The unique name of the alias. This must be
unique within the dimension.

label string Y The name of the alias, as it appears in
AtScale and BI tools. This value does not
need to be unique.

dataset string Y The source dataset that contains the column
that the alias is based on.

name_column string Y The dataset column that the alias is based
on.

sort_column string N The column used to sort the values in result
sets. This applies to MDX queries only
(queries received through the XMLA
interface).

description string N A description of the alias.

is_hidden boolean N Determines whether the alias is visible in BI
tools.

Supported values:
● true
● false

exclude_from
_dim_agg

boolean N Excludes this alias from system generated
dimension-only aggregates. This is useful if
the alias contains a large number (millions) of
distinct values that you don't want to
aggregate.

Supported values:
● true
● false

exclude_from
_fact_agg

boolean N Excludes this alias from system generated
fact-based aggregates. This is useful if the
alias contains a large number (millions) of
distinct values that you don't want to
aggregate.



Supported values:
● true
● false

cusom_empty_
member

object N Defines custom empty member values for the
alias.

This feature allows fact data with missing or
invalid foreign key values to be isolated and
independently aggregated from those with
valid foreign key values. Because fact records
with invalid foreign keys are aggregated
separately from records referencing valid
dimension members, analysts can easily spot
data integrity problems and further
investigate them.

Use this feature to ensure that un-joinable
values are included in query results and
aggregated under a specially designated
dimension member called the Custom Empty
Member.

Supported properties:
● key: Array, required. A list of the

empty member values to use for key
fields.

● name: String, required. The empty
member value to use for name fields.

● sort_name: String, optional. The
empty member value to use for the
alias’s sort_column, if one is
specified.

format string N The format in which query results are
returned. You can use one of AtScale’s built-in
named formats or a custom format string.

Supported named formats:
● fixed
● general number
● none
● percent
● scientific
● standard



Custom format strings should be in quotes
and contain one to four sections, separated
by semicolons. For example: "$#,##0.00"

folder string N The name of the folder in which the alias
appears in BI tools.

Dimensions: hierarchies: levels: metrics property
The metrics property of a dimension level defines secondary metrical attributes for the
dimension, which behave like metrics in a very limited context of the data model.

✏Note: This feature is experimental and must be enabled within AtScale by an admin.

The metrics property within a dimension hierarchy level supports the following
properties.

Property Type Required Description

label string Y The name of the secondary metrical attribute,
as it appears in AtScale. This value does not
need to be unique.

unique_name string Y The unique name of the secondary metrical
attribute. This must be unique within the
dimension.

dataset string Y The source dataset that contains the column
that the secondary metrical attribute is based
on. This should be the dimension dataset
name.

column string Y The column within the dataset that the
secondary metrical attribute is based on.

calculation_
method

string Y The calculation to apply to the data.

Supported values:
● average
● count distinct
● count non-null
● estimated count distinct
● maximum
● minimum
● percentile
● stddev_pop



● stddev_samp
● sum
● var_pop
● var_samp

description string N A description of the secondary metrical
attribute.

is_hidden boolean N Determines whether the secondary metrical
attribute is visible in BI tools.

Supported values:
● true
● false

folder string N The name of the folder in which the
secondary metrical attribute appears in BI
tools.

format string N The format in which query results are
returned. You can use one of AtScale’s built-in
named formats or a custom format string.

Supported named formats:
● fixed
● general number
● none
● percent
● scientific
● standard

Custom format strings should be in quotes
and contain one to four sections, separated
by semicolons. For example: "$#,##0.00"

exclude_from
_dim_agg

boolean N Excludes this secondary metrical attribute
from system generated dimension-only
aggregates. This is useful if the secondary
metrical attribute contains a large number
(millions) of distinct values that you don't
want to aggregate.

Supported values:
● true
● false

exclude_from
_fact_agg

boolean N Excludes this secondary metrical attribute
from system generated fact-based



aggregates. This is useful if the secondary
metrical attribute contains a large number
(millions) of distinct values that you don't
want to aggregate.

Supported values:
● true
● false

custom_empty
_member

object N Defines custom empty member values for the
secondary metrical attribute.

This feature allows fact data with missing or
invalid foreign key values to be isolated and
independently aggregated from those with
valid foreign key values. Because fact records
with invalid foreign keys are aggregated
separately from records referencing valid
dimension members, analysts can easily spot
data integrity problems and further
investigate them.

Use this feature to ensure that un-joinable
values are included in query results and
aggregated under a specially designated
dimension member called the Custom Empty
Member.

Supported properties:
● key: Array, required. A list of the

empty member values to use for key
fields.

● name: String, required. The empty
member value to use for name fields.

● sort: String, optional. The empty
member value to use for the
secondary metrical attribute’s sort
column, if one is specified.

unrelated_di
mensions_han
dling

enum N Determines how the AtScale engine behaves
when all of the following conditions are true:

● A client queries a model that contains
multiple fact datasets.

● The data in each fact dataset are at a
different level of granularity than the
data in the other fact datasets.

● The query references dimensions that
are not related to the metrics being



queried.

Supported values:
● error: AtScale rejects the query and

returns an error message.
● empty: AtScale displays empty cells in

the query results.
● repeat: In the query results, AtScale

repeats the values for the secondary
metrical attribute at a level of
aggregation that is determined from
the shared dimensions in the query.

Dimensions: level_attributes property
Level attributes are attributes associated with a particular dimension hierarchy. Every
hierarchy has a key level attribute, which is the most granular representation of the
dimension's data. Only level attributes can be used to define relationships between
datasets and other dimensions.

Within SML, level attributes are defined by the level_attributes property of a
dimension file.

The level_attributes property of a dimension file supports the following properties.

Property Type Required Description

unique_name string Y The unique name of the level attribute. This
must be unique within the dimension.

label string Y The name of the level attribute, as it appears
in AtScale. This value does not need to be
unique.

dataset string Y The source dataset that contains the columns
that this level attribute is based on.

name_column string Y The column whose values appear for this
level attribute in BI tools. For example, the key
may be a product ID number, but you want
users to see product names instead.

key_columns array Y The dataset column that the level attribute is
based on. If the level attribute has a
compound key, list all columns that make up



the key.

If the key consists of one column, the values
in that column must be unique. If the key is a
compound key, the columns together must
provide unique values.

description string N A description of the level attribute.

is_hidden boolean N Determines whether the level attribute is
visible in BI tools.

Supported values:
● true
● false

is_unique_ke
y

boolean N Determines whether the key_columns values
are unique for each row.

Supported values:
● true: The key column values are

unique for each row. The join behavior
considers the first matching row at
query runtime.

● false: The key column values are
multi-valued. The join behavior
considers all matching rows at query
runtime.

✏Note: Setting this value to true is
equivalent to declaring the key to be a
primary key. The AtScale engine uses this
property as input when joining rows from this
level attribute to other datasets in the model.

contains_uni
que_names

boolean N Determines whether each member of this
level attribute has a unique name. Do not
enable this functionality if two members have
different keys but the same name.

Supported values:
● true
● false

exclude_from
_dim_agg

boolean N Excludes this level attribute from system
generated dimension-only aggregates. This is
useful if the level attribute contains a large
number (for example, in the millions) of



distinct values that you don't want to
aggregate.

Supported values:
● true
● false

exclude_from
_fact_agg

boolean N Excludes this level attribute from system
generated fact-based aggregates. This is
useful if the level attribute contains a large
number (for example, in the millions) of
distinct values that you don't want to
aggregate.

Supported values:
● true
● false

sort_column string N Defines the column to sort query results on.
By default, this is the name_column; however,
you can optionally use this property to
specify a different column.

✏Note: This only applies to MDX queries
(queries received through the XMLA
interface).

allowed_calc
s_for_dma

array N A list of the calculations that can be used
when creating dimensionally modified
aggregates for the level attribute.

folder string N The name of the folder in which this level
attribute appears in BI tools.

Dimensions: relationships property
The relationships property in a dimension file defines the relationships to embedded
and snowflake dimensions.

✏Note: The relationships between the model’s fact datasets and first order dimensions
(fact relationships) are defined in model files.

For more information on relationships in AtScale, see Appendix A� Relationships in AtScale
Models.

The relationships property in a dimension file supports the following properties.



Property Type Required Description

from object Y Defines the side of the relationship that
contains the physical dataset that you want
to connect to another dimension.

Supported properties:
● dataset: String, required. The

physical dataset you want to link to a
dimension.

● join_columns: Array, required. The
column(s) within the dataset that you
want to use for the join.

● hierarchy: String, optional. The
hierarchy within the dimension from
which the relationship should
originate.

● level: String, optional. The level
within the hierarchy from which the
relationship should originate.

For snowflake relationships (as defined by
the type property), you only need to define
dataset and join_columns.

to object Y Defines the dimension that the from dataset
is linked to.

Supported properties:
● dimension: String. The name of the

dimension the from dataset is linked
to.

● level: String, required if
row_security is undefined. The key
level within the dimension to use for
the relationship.

● row_security: String, required if
level is undefined. For security
relationships, the row security object
that the from dataset is linked to.

For snowflake relationships (as defined by
the type property), you only need to define
level.

type string Y Defines the relationship as either embedded



or snowflake.

Supported values:
● embedded: A secondary relationship,

or one that connects a primary
dimension to a secondary dimension.

● snowflake: A relationship that
connects one of several underlying
physical datasets together to create a
snowflake dimension.

role_play string N For role-playing relationships only. Defines
the role-playing template for the relationship.

The role-playing template is the prefix or
suffix that is added to every attribute in the
role-played dimension. You can also specify
both a prefix and a suffix.

This value must be in one of the following
formats (including quotation marks):

● Prefix: “<prefix> {0}”
● Suffix: “{0} <suffix>”
● Prefix and suffix: <“prefix> {0}

<suffix>”

For example, if you wanted to use the prefix
Order, you would set role_play to “Order
{0}”.

unique_name string N The unique name of the relationship. This
must be unique within the dimension.

Dimension: calculation_groups property
The calculation_groups property in a dimension file defines calculation groups to use
in the dimension.

Dimension calculation groups offer a simplifying alternative to calculated metrics by
enabling the expression of boiler-plate calculations across multiple metrics. This feature
defines calculations as dimension members and removes static references to individual
measures.

The calculation_groups property in a dimension file supports the following properties.



Property Type Required Description

unique_name string Y The name of the calculation group. This must
be unique within the dimension.

description string Y A description of the calculation group.

calculated_m
embers

array Y Defines the individual calculations in the
group.

Supported properties:
● unique_name: String, required. The

name of the calculation. This must be
unique within the dimension.

● description: String, required. A
description of the calculation.

● expression: String, required. The
MDX expression for the calculation.
This must be in quotes.

● format: String, optional. The format
for the calculation results. You can use
one of AtScale’s built-in named formats
or a custom format string:

○ Supported named formats:
fixed, general number,
none, percent,
scientific, standard

○ Custom format strings should
be in quotes and contain one to
four sections, separated by
semicolons. For example:
"$#,##0.00"

folder string N The name of the folder in which the
calculation group appears in BI tools.

Row Security
Row security files enable you to define security objects, which restrict access to data in a
model. These restrictions can be configured at either the user or the group level. When
users run queries against a model, AtScale uses the row_security as a runtime
constraint.



Row security requires a separate dataset that maps user or group IDs to specific rows in a
dimension or fact dataset. Each user or group can only access the data in rows that
match the filter; for example, you can restrict a user’s access to rows relating to specific
countries only.

Once you create a security row object, you can use it to secure other dimensions and
datasets in a model by creating a relationship from the dataset/dimension you want
secured to the security row file. For more information, see Model: relationships property
and Dimension: relationships property.

Row security files support the following properties.

Property Type Required Description

unique_name string Y The unique name of the security object. This
must be unique across the repositories and all
subrepositories.

object_type const Y The type of object defined by the file. For row
security files, the value of this property must
be row_security.

label string Y The name of the security object, as it appears
in AtScale. This value does not need to be
unique.

dataset string Y The dataset that contains the
user-to-attribute mappings determining
which rows each user/group can access.

filter_key_c
olumn

string Y The column in the security dataset that
defines the rows each user/group has access
to.

ids_column string Y The column of the security dataset that
contains AtScale user/group IDs.

id_type string Y Determines whether the IDs are for users or
groups.

Supported values:
● user
● group

scope string Y Determines which queries the security
constraint is applied to.



Supported values:
● related: The security constraint is

applied when the query selects any
dimension or secondary attribute that
has a path to the security dataset, as
long as no fact table is used.
The security constraint is not applied
to dimension-only queries that select
multiple dimensions related through a
fact table.

● fact: The security constraint is
applied to the same queries as the
related option, as well as queries
that include a measure from a fact
table connected to the secure
dimension.
The security constraint is not applied
to single-dimension-only queries that
are related to the secured dimension
via the fact table. However,
multi-dimension-only queries do have
security applied because they are
joined using a synthetic measure from
the fact table that relates them.

● all: The security constraint is applied
to all queries, unless there is no path
to the security dimension. This is the
case with two separate fact tables,
each with their own unrelated
dimensions.

description string N A description of the security object.

use_filter_k
ey

boolean N Determines how AtScale enforces security.

Supported values:
● true: The system first looks up the

filter_key_column values using the
user or goup’s ID, and then uses those
values as a constraint in a second
query against the fact dataset or
dimension. Some data warehouses
perform better with this option.

● false: The system enforces security
by joining with the security table.

secure_total
s

boolean N Enables/disables the secure totals
functionality.



When enabled, the security restriction applies
to the following:

● Subtotal measures of the secured
hierarchy level or reachable attributes
of higher levels.

● Queries that select secured fact tables
(a scope of all or fact), but do not
select the secured dimension.

● The grouping of the secured level.
● The secured level's secondary

attributes.
● Attributes and nested dimensions that

are reachable from hierarchy levels
lower than the secured level.

When secured totals is disabled, the security
restriction only applies to the following:

● The grouping of the secured level.
● The secured level's secondary

attributes.
● Attributes and nested dimensions that

are reachable from hierarchy levels
lower than the secured level.

Supported values:
● true (default)
● false

Appendices

Appendix A� Relationships in AtScale Models
Relationships play an integral role in AtScale models — they define the links between
physical datasets and logical dimensions. They are not modeled between two datasets
directly. When you create a relationship in a model, you provide information that the
AtScale engine can use to join the underlying tables at query time.

✏Note: A dimension is not considered part of a model until it has a relationship to a fact
dataset within the model (either directly or indirectly).

AtScale supports the following types of relationships:
● One-to-many: When modeling data in a star schema format, dimension-to-fact

relationships are typically one-to-many. This means that each record in the fact



dataset can link to one (and only one) record in the dimension dataset, but a
record in the dimension dataset can be associated with many fact records.

● Many-to-many: Real-world use cases do not always align with the one-to-many
star schema model. Some relationships can only be represented as a
many-to-many relationship. This occurs when a fact dataset row can refer to more
than one row in a dimension dataset. In AtScale, this is modeled by defining a
dimensional bridge to resolve the many-to-many relationship.

● Role-playing: Whenever you create a relationship to a dimension, whether from a
fact table to a dimension or from one dimension to another dimension, an instance
of that dimension is added to the model. In some cases, the same dimension may
be referenced in more than one context in the same model. A role-playing
relationship is what differentiates multiple instances of the same dimension in a
model.

● Multi-fact: A multi-fact model is when you want to analyze measures that originate
from two different fact datasets. This is possible in AtScale, provided that both fact
datasets have relationships to common dimensions.

Within SML, relationships can be defined at both the model and dimension levels:
● Relationships defined at the model level are strictly between fact datasets and

dimensions.
● Relationships at the dimension level are between other types of datasets used in

the model and dimensions.

For information on defining relationships in SML, see Model: relationships property and
Dimensions: relationships property.


