Scale your Data Science Program

With AtScale AI-Link

Leverage an AtScale semantic layer to eliminate data wrangling, accelerate
feature discovery, and publish model results to a broader audience

Data scientists rely on fast and easy access to enterprise data to be successful.
The ability to access a consistent and reliable set of dimensions and metrics
without manual data preparation is critical. Further, the ability to move and
manipulate data with Python scripts is fundamental.

AtScale provides an analytics semantic layer solution that bridges business intelligence and data
science teams. Data scientists access a curated source of data with simple Python scripts to use
in ML models and AutoML platforms. AtScale delivers a clean representation of key business
metrics and important analysis dimensions that that ensures consistency across all users even if
underlying data sources change.

The Power of AtScale for Data Science

AtScale AI-Link brings the benefits of a semantic layer to data science users. The ability to access
comprehensive data while ensuring a consistent view of critical metrics results in better models
and better insights. Beyond basic metrics like revenue and shipments, AtScale supports any
number of calculated metrics like average selling price or margin. Furthermore, AtScale can
mange complicated time relative metrics that are critical to time series analysis. Using simple
Python scripts, data scientists can move data from AtScale into their models or AutoML platforms
simplifying feature engineering and supporting consistency for production models. AtScale
can keep models running by insulating them from changes to underlying data sources.

atscale ai-link semantic layer for data science

AtScale AI-Link also supports the write-back of model results through the semantic layer. This lets BI teams publish model results to analysts and managers using existing dashboard and reporting tools. Further, report consumers can leverage the AtScale dimensional model to drill down into model results as they would with analyzing historical data.

The AtScale AI-Link Advantage

  • Semantic Layer

    Establish single view of critical business metrics (e.g. revenue, COGS, headcount) and analysis dimensions,establishing a common analytics vocabulary across all data consumers. Blend data from broader range of internal sources and 3rd party data to expand universe of features.

  • Support Time Series Analysis

    Maintain curated set of time-relative measures with no complex SQL. Automatically create time series features based on your definitions of time.

  • Feature Engineering

    Deliver comprehensive view of all variables with simplified transformations and minimal data engineering to feed models.

  • ML Model and AutoML platform integration

    Leverage AtScale models with data science tools using a simple Python library and manage within your favorite notebooks.

  • Programmatic Feature Creation

    Direct integration to consistent enterprise features and third-party data sources enable programmatic feature creation and engineering for more sophisticated models.

  • Drive Visibility and Use of Predictions

    Automatically publish predictions within dimensional models for broader visibility and self service consumption in existing BI tools.


AtScale enables smarter decision-making by accelerating the flow of data-driven insights. The company’s semantic layer platform simplifies, accelerates, and extends business intelligence and data science capabilities for enterprise customers across all industries.

Key Analytics Benefits
  • Accelerate feature engineering with consistent access to enterprise features and key business metrics.
  • Eliminate time-consuming and complex data engineering.
  • Open integration to cloud feature stores.
  • Compatible with popular open source ML libraries and platforms.
  • Integrate predictive and prescriptive analytics directly into BI tools.