Skyscanner Improves Data Accuracy and Consistency with AtScale

Skyscanner logo
View PDF Button Arrow
Databricks Logo Microsoft Excel logo Tableau logo

Skyscanner delivers search engine and travel agency services with 100 million monthly users. Its users can search and book flights, hotels, and car rentals for trips anywhere in the world.

Skyscanner has multiple departments relying on accurate data to develop insights and track KPIs. But various tools including Tableau and Excel were returning inconsistent data reports. The Skyscanner team needed a new tool to support multidimensional data analysis in the cloud, give business users direct access to the Delta Lake on Databricks, and ensure that consistent data is dispersed throughout all departments in the company.


Simplifying and future-proofing the data landscape

Skyscanner had a long-standing integration with SQL Server Analysis Services, but as the business scaled SSAS no longer suited the company’s needs.

The Skyscanner team needed to simplify and future-proof their data landscape by opting to replace SQL Server and SSIS/SSAS with a technology capable of accelerating query performance from their Databricks data lake. The most significant pain points Skyscanner faced were data consistency and accuracy.


Autonomous data engineering and a universal semantic layer

After a multi-year effort to de-commission SSAS, Skyscanner was looking for a tool that would provide business users with a multidimensional interface to support data analysis in the cloud.

It was also important for the new tool to provide direct access to the Delta Lake on Databricks — to fix the inconsistencies of data query results across various BI tools like Tableau and Excel. Skyscanner needed to resolve these inconsistencies while still allowing business users from different departments to operate on their BI tools of choice.

The Skyscanner data team partnered with AtScale and Databricks to build a universal semantic layer that provided a consistent and governed “diamond layer” of metrics and KPIs that could be accessed and used by anyone across the company regardless of the BI tool they were using. AtScale’s solution enabled Skyscanner to automate and orchestrate aggregate creation while pushing all workloads to the Databricks Lakehouse, ultimately providing a highly scalable, low-latency solution that decreased time-to-insights.


Consistent results across dashboards and faster time-to-insights

With AtScale, Skyscanner’s business users get consistent data query results regardless of their BI tool. Users can conduct pivot table analysis on data in Databricks, model once in AtScale, and ensure that query results and reports are consistent across tools. AtScale also enables Skyscanner to generate data insights faster, while increasing cross-departmental collaboration and innovation.